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A three-velocity, three-pressure mathematical model is proposed which enables one to study wave processes in the case of a 
double porosity, deformable, fluid-saturated medium. This model takes account of the differences in the velocities and pressures 
in pore systems of different characteristic scales of the pores, fluid exchange between these pore systems and the unsteady forces 
due to interphase interactions. It is established that a single transverse and three longitudinal waves: one deformation wave and 
two filtration waves, propagate in such a medium. The existence of two filtration waves is associated with the two different 
characteristic scales of the pores and the difference in the velocities and pressures of the fluid in these pore systems. The filtration 
waves decay considerably more rapidly than the deformation and transverse waves. The velocities of the deformation and transverse 
waves are mainly determined by the elastic moduli of the skeleton. The velocity and decay of the first filtration wave depend 
strongly on the intensity of the interphase interaction force while the velocity of the second filtration wave depends strongly on 
the rate of mass exchange between the pores and the cracks. The rate of decay of the second filtration wave is significantly higher 
than that of the first filtration wave. © 2000 Elsevier Science Ltd. All rights reserved. 

The majority of papers dealing with cracked porous media are concerned with investigating seepage 
processes [1-15], but the special features of the propagation of waves in such media remain insufficiently 
studied [16--20]. 

1. A M E D I U M  WITH D O U B L E  P O R O S I T Y .  R E D U C E D  STRESS.  
THE MASS AND M O M E N T U M  BALANCE EQUATIONS 

To study the process of the propagation of linear waves, we shall construct a model of a medium with 
double porosity which takes account of the differences in the velocities and pressures in the fluid phase 
contained in the pores and in the cracks as well as the interchange of fluid between them. We shall 
distinguish between the solid phase (indicated by the subscript s), the fluid in the pores (p) and the 
fluid in the cracks (f). Quantities referring to all of the fluid will be labelled with the subscript l. We 
shall assume that the mean radius of the primary pores ap, the mean half-width of the cracks af and 
half the average size of the porous block ab are the linear scales of the medium. 

In the case of a conventional porous medium, the reduced (or effective) stress os is defined by the 
equality 

o.~. =cx,,(o.,.-ot); ~=o.~. + o  t (1.1) 

Here, % is the volume of the solid phase, os and ot are the averaged true stresses within the solid and 
the liquid phases, respectively, and o is the total stress in the medium. However, if account is taken of 
the fact that, in a medium with double porosity, the fluid pressures in the primary and secondary pores 
can be different, it is possible to express the mean stress ol in the fluid in terms of the stresses in the 
primary pores o e and the secondary pores of as follows: 

OLpOp + (~ fOf  
ot = (1.2) 

O~p + Off 

We now write out the equations for the conservation of mass and momentum [21, 22] for the solid 
phase, for the fluid in the pores and in the cracks, taking account of relations (1.1) and (1.2) 
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= ~ Vkpfv~ = q ~P.,. + Vkpsv~ = 0, + V*ppvp~ -q ,  + 
3t 

P" dt =-°L'VkPt + W°~* + t~lk' + F], pt - uppp +tXfpf  (1.3) 
• ' O~p + t~f 

dr* P, dye, * * -----/-f - F k + qv~ = - t x , V k p ~ - F t , - q v p ,  Of = - - ~ f V k p f  t dt t t dt f 

Here, o~., pj and vj are, respectively, the volume, the reduced density and the velocity of thejth phase, 
pp andpf are the pressures in the pores and in the cracks, q is the rate of exchange of fluid between the 
pores and the cracks, Fp and Ff are the forces of interaction between the solid phase and the fluid in 
the pores and the solid phase and the fluid in the cracks respectively, and the superscripts correspond 
to the coordinates. 

It is assumed that the averaged viscous stress tensor in the fluid is negligibly small and that the fluid 
viscosity only manifests itself in the processes of the interaction of the fluid and the skeleton and fluid 
exchange between the pore systems. 

In the case of the true densities p~ and the phase volumes o~, we have 

p.i = txjp~, j = s, p, f ;  tX.~. + ap + t~f = 1 (1.4) 

In the case of steady-state harmonic oscillations with frequency 03, we adopt the expressions for the 
interphase forces Fp and Ff in (1.3) in the form [21, 22] 

Fi= Fmj+ F~i, j = p , f  (1.5) 

F, j I o. , 

f j  (03) = "q~a-f 2 + rlBja Ttl ~ ~t I (I + i) 

Here, Fmj is the force due to the inertial interaction of the phases [22], F w is the total force of viscous 
friction, taking account of an analogue of the Basset force which arises due to transient effects, i is the 
square root of -1, Ixi is the dynamic viscosity of the fluid, aj is the characteristic pore size and rl,,,j, ~q, 
rlBj are coefficients which depend on the structure of the porous medium. 

A cross flow of fluid from one pore system into the other, that is, an exchange of'fluid between the 
pore systems, is possible when the pressurespp andp/in the primary and secondary pores are different. 
The expression 

p~kp pp - p.f 
q=  rlq I.t---~ a----~ (1.6) 

obtained under the assumption that the fluid flow is inertialess [4], is usually used for the rate of fluid 
exchange q when studying the seepage of a fluid in media with double porosity. Here, kp is the 
permeability of the primary pore system and rlq is a dimensionless constant which characterizes 
the geometry of the medium. Note that the permeability kp is expressed in terms of the coefficient for 
the steady force of viscous drag F ~  namely kp = 177fl~/(txsl]~ ). If, however, allowance is also to be 
made for transient effects in the fluid flow, then, instead of a ~ , ,  it is necessary to take the coefficient 
for the case of the total force of viscous drag 1/fp(03). Hence, we write the expression for the rate of 
fluid exchange between the pore systems, q, in the form 

O~t, P*t Pt' - P.t (1.7) 
2 q = rlq o~.~ I.ttfp(03) at, 

2. THE E Q U A T I O N S  OF STATE FOR THE ELASTIC S K E L E T O N  
OF THE M E D I U M .  THE EQUATIONS OF STATE OF THE PHASES 

In deriving the equation which determines the behaviour of the skeleton of the porous medium, we 
shall adopt an approach which was previously described in [2, 21], according to which the tensor for 
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the macrodeformations of the solid phase es is defined as the sum of the averaged tensor of the micro- 
deformations of the skeletal material E] and the tensor of the effective deformations Es. due to the 
displacements of the grains with respect to one another 

a_ kl ' 
e,. =E~.+E..;.  at " --- v v,) (2.1) 

It is natural to assume that, in a medium with double porosity, the effective deformation es. occurs 
both as a result of the relative displacements of the granules within a porous block and as a result of the 
displacement of the blocks themselves with respect to one another. Suppose esop is the effective defor- 
mation due to the relative displacements of the granules within blocks and £svis the effective deformation 
due to the displacement of the blocks. We shall assume that 

e.., = e..~ t, + e .  I , . .  e *t..~ p = (1 - r l )e~ , . .  e *t.,..y = rle~. (2.2)  

where 1] is a certain (as yet unknown) scalar quantity. 
We next assume that the reduced (effective) stress a,, in the mixture depends linearly on the effective 

deformation e,.. Then, taking account of equality (2.2), we have 

o C = c .  +o. .y  (2.3) .. .~. p 

where os*p is the effective intergranular stress, which depends linearly on e,.. and 6sV is the effective 
stress between the blocks which depends linearly on es*f. We assume that eac[a of the stresses os. ,  o,V 
is proportional to the difference between the averaged true stresses in the phases with a certain coef-f[cient 
of proportionality 

o .  = ×j(o~- oj), j = p , f  (2.4) s j 

Substituting the last expressions (2.4) into (2.3) and taking account of relations (1.1) and (1.2), we 
find the values of the coefficients ×p and Xy. As a result, we obtain 

Ots~j 
~ .  - (ff,.-crj), j = p,f (2.5)  s j IXp + IXy 

The effective expressions for Gs*. and os.¢can be interpreted as follows: os.p is the part of the effective 
stress ~;. which is responsible for t~ae transfer of momentum through the solid phase across the contacts 
between the granules of a porous block and o;./is the part of as. which is responsible for the transfer of 
momentum across the contacts between the blocks. In the limiting cases when • = 0 (a cracked medium) 

or F~or sO(a]lC~enmtiO~ialnPsOrgt~2gd~mm),,w:2::$u~e/,thO ,eaach o~,~orffe~£io0,so~.j (ff~**ji ~:sdP$$:~v~ 

by Hooke's law with certain elastic moduli which characterize the skeleton of the porous medium (~ta 
is the Kronecker delta) 

¢~1-{_ - ,,,, kt 2 ~ , j e ~ j ) ,  j p,f (2.6)  • ~ j - a . ~ ( L , i e . j 8  + .. = 

Hooke's law holds for the deformations of the material of the grains (~ and Ix, are the elasticity moduli 
of the solid phase material) 

d*' --' (o" 1 • = 21.t s [., 3Xs+2~t, ¢~i'..''8 't (2.7) 

Taking account of relations (1.2), (2.2), (2.5) and (2.7) and the equalities 5~ = ---6tapp, o ~  = .._~klp/, 
we express e~m.~ in terms of O~.j (j = p,f). Substituting these expressions into (2.6) and solving them for 
~t.j, o~.j, we obtain 

(~k~ mm kl = (1-'q)Cc.,[X,p£ s 8 +2p.,pe~ t +V,l, pp8 kl] s p 

(2.8) 
(ykl mm kl kl 

s*f =T]0[s[~ '*f  Es $ +21"t*/£s +V*fP f  SkI] 
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where 

=Lj  ! ,  ' 

~,,j + 2It,j / 3 
v,j  = ~.., + 2Ixs / 3 ' j = p' f 

IX,j =12,j 1+ It,..j 

(2.9) 

For os* = as*p + as*f, we can write 

ok~.,. : O,.tA,,E,.r~ ,,,,,,,.ktO + 2ix,~,.{t + ( 1 -  rl)V,ppp$*t + r lV, fp f8  *t] (2.10) 

~., = ( I - r l ) M p  + ~l~.,f, It, =(I - r l )g ,p  + r ig , ;  

Note that, if an equation of  state of the skeleton is derived which does not take account of  the more 
complex structure of a medium with double porosity and the difference in the pressurespp andpf  (that 
is, as this equation is derived in the case of a conventional porous medium [2, 21]), a formula is obtained 
after analogous arguments which only takes account of certain "mean" moduli of elasticity of the skeleton 
~, and Ix. and the mean pressure in the fluid Pl 

o *l..,, = ~.,.LA,,E.,.'4 ,,,,,,O,to + 2it,e,*. t + v,ptSUl, k , + 2 g , / 3  
v, = (2.11) 

~, +2Ix , /3  

This formula can also be considered as an equation of state for the skeleton of  the medium but, in 
the case of a medium with double porosity, it is less detailed than (2.10). If one takes ~., and g,, as 
defined above, and equates the coefficients ofpp and pf  in (2.10) and (2.11), it is found to be possible 
to find the as yet unknown quantity TI 

n % v*___z] -' 
Off V,p ) 

(2.12) 

Hence, if the behaviour of  the skeleton of a medium with double porosity is assumed to be elastic, 
it is necessary to specify the four elasticity moduli L.p, Ix.p, ~op and Ix,t,. The equation of state (2.10) 
relates the reduced stress t~°,, the macrodeformations of the skeleton e, and the pressures in the primary 
and secondary pores&, andp ; the quantities v° ,  v°f and 11 are uniquely defined by the coefficients ~.., y" p p 
Ix.p, k.p and Ix.p and the volumes ap, af  in accordance with relations (2.9) and (2.12). Note that, in the 
limiting cases when t~ = 0 or a / =  0, we have 11 = 1 or rl = 0 in (2.12), respectively, and the equation 
of state (2.1) is identical with the equation of state for a conventional elastic porous medium with 
elasticity moduli ~,*f, Ix*f or ~'*u, Ix'p. 

When a more exact quantftati~/e description of the decay of the waves is required, a more complex 
equation of state can be constructed for the solid state by taking account, for example, of the viscoelastic 
behaviour of the skeleton. In this case, the dissipation of the kinetic energy due to the friction between 
the grains of the skeleton during its deformation will be taken into account. 

Note that, in [16, 17], an equation of state of a medium was used which is described in terms of the 
pressures in the pores and cracks and the total stress in the medium, that is, without making use of the 
concept of an effective stress. In [19, 20], the equations of  state and the motions of a cracked porous 
medium were obtained from the corresponding equations which describe the process on a microscale 
by the spatial averaging method. The final equations are written in terms of displacements, which means 
that they are cumbersome and difficult to understand. 

The equations of state for the material of the solid phase and for the fluid in the pores and in the 
cracks can be taken in the form 

o j 

p.~ = K.~p.~"/pso(Ks = ~'s + 2#.,./3), pj = KipS"/P~o, J = P , f  (2.13) 

where K, and Kl are the elasticity moduli for the all-round bulk compression of the solid phase material 
and the fluid (henceforth, a zero subscript denotes the unperturbed value of  a quantity, u '  = u - u0). 
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3. T H E  C O N D I T I O N S  F O R  C O M P A T I B L E  
D E F O R M A T I O N  OF THE PHASES 

The relation between the pressuresps,, ps, Pl, which follows from (1.1) 

p,, =~. , (p , -p~) ,  p .  =-o~:" ' /3  (3.1) 

or the equation for the change in porosity, which is a consequence of (3.1) and, in the case of a medium 
with an elastic skeleton, has the form [2, 21] 

.- = (I - v , )  ( 3 . 2 )  
c~.~ t p.~ K s 

is used for the closure of the system of equations of motion of a conventional porous medium. 
In the case of a medium with double porosity, not just one but two conditions for the compatible 

deformations of the phases are required for the closure of the system of equations (this is associated 
with the existence of two pressures in the fluid). The relation between the pressures Ps',Ps, Pp, Pf, which 
follows from (1.1) 

p. .=ot . , (p . , -pl) ,  p .  =-oi ,  i'," / 3 (3.3) 

can be taken as the first of these conditions. 
Equation (3.2) is used to obtain the second condition of compatible deformation. We will derive an 

equation for the change within a porous block. For this purpose, in (3.2), it is necessary to replace P'I 
bypp, v. by vo v, oq by ct~/(ot~ + Op) and Ps = o~ps by ps/(tts + %) = a~p°~/(o~s + ~ )  since these quantities 
now refer not to unit volume of the medium but to the volume of a porous block in unit volume of the 
medium. The equation 

is obtained as a result. 

+ v.p = (1 - v,p) (3.4) 
~.,. 1 - ~ y  K, ) 

The system of equations (1.3), (1.4), (2.1), (2.3), (2.8), (1.2), (2.13), (3.3) and (3.4), which has been 
obtained with the given expressions for mass and momentum exchange (1.5) and (1.7) and the specified 
elasticity moduli of the skeleton ~ . ,  Ix.p, L.f, Ix.f is closed and can be used for the linear analysis of the 

• • • P , 

wave processes in a medium with double porosity. 

4. T H E  P R O P A G A T I O N  OF L I N E A R  WAVES IN 
A C R A C K E D  P O R O U S  M E D I U M  

We will now consider the motion of a medium corresponding to the propagation of one-dimensional 
monochromatic waves, that is, when 

X V vj = vj = ~. exp(icot - ikx), v) = v} = 0 

in the case of longitudinal waves, and 

x =v.~; =0  v~ = vj = Vj exp(icot - ikx), vj / 

in the case of transverse waves (j = s, p, f; t is the time and x, y and z are Cartesian coordinates), co is 
the angular velocity and k is a complex wavenumber. The dispersion relations for the longitudinal and 
transverse waves are obtained by substituting the solutions in the above-mentioned form into the 
linearized system of equations of motion of the medium and equating the determinant of this system 
to zero. 

It was found that the dispersion relation for the longitudinal waves is an algebraic equation of the 
third degree in k 2 and, in the case of the transverse waves, an equation of the first degree in k 2. It follows 
from this that a single transverse wave and three types of longitudinal waves can propagate in the 
medium. The velocity C (m) and the decay 8 (m) of each of these waves are determined after solving the 
dispersion relation k Ira) = k(m)(co) using the formulae 
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C o'') = to/Re kt"'), 8 o'') = -Im kt") (4.1) 

where m = 1, 2, 3 corresponds to the longitudinal waves and m = 4 corresponds to the transverse 
wave. 

The conclusion has also been previously drawn [16, 17] that there are three types of longitudinal waves 
and a single transverse wave in a cracked porous medium. One of the longitudinal waves is associated 
with the elastic properties of  the skeleton, the second with the pore space and the third with the space 
of the cracks. The processes involved in the propagation of monochromatic waves in a cracked porous 
medium saturated with two different fluids have been studied in [19, 20] and it has been shown that 
there are four different types of longitudinal waves. Here,  the first and third waves are analogous to 
the fast and slow waves in a porous medium, the second wave arises due to the existence of cracks, and 
the fourth wave is associated with the pressure difference in the fluids in the porous blocks. 

Here,  it is necessary to recall that two types of longitudinal waves exist in a conventional porous 
medium which are due to the two different mechanisms for momentum transfer: through the fluid and 
directly through the solid phase. The natural question therefore arises as to how the appearance of a 
third longitudinal wave in a medium with double porosity is to be explained. In order to elucidate the 
mechanism by which the additional wave occurs, detailed consideration was given to the propagation 
of waves in a cracked porous medium with an incompressible and undeformable skeleton, that is, when 
Vs = 0 and aj = const. 

In this case, the system of equations of motion, neglecting the inertial terms in the momentum balance 
equations, is equivalent to the equations in [1], which are used to describe seepage processes in a cracked 
porous medium. It has been found that, in such a medium, two longitudinal waves propagate through 
the fluid (that is, there is also an additional longitudinal wave in this case) and that the velocity and 
decay of these waves are determined by the interphase forces Fp and/7/and the rate of fluid exchange 
between the pore systems, q. If  interphase forces a re  neglected in the equations of motion but mass 
exchange between the pore systems is taken into account, (Fp = Ff  = 0, q ~ 0), it then follows from 
the dispersion relation that, in this case, one of the waves propagates at the speed of sound Cl in the 
pure fluid without attenuation. The other wave propagates at a lower velocity and decays as it propagates. 
If, in the initial equations, no account is taken of the cross flow of the fluid between the pore systems 
but the interphase forces (Fp, F / ~  0, q = 0) are taken into account, the velocity of each of the waves 
is less than Ct and both waves decay during propagation. If, however, both fluid exchange and interphase 
interactions are neglected (Fp = Ff = 0, q = 0), it is found that, in this case, each of the two waves 
propagates at the speed of sound in the pure fluid Cl without attenuation. It is clear that an identical 
type of propagation of  these two waves has been obtained due to the fact that no account whatsoever 
has been taken of the fluid viscosity in the latter case and the effect of this depends very much on the 
characteristic scales of the inhomogeneity of the medium. The mean velocity of motion of a viscous 
fluid and the pressure depends on the size of the pores. It is therefore necessary when treating a medium 
with two characteristic pore sizes to take account of the difference in the velocities and pressures in 
each of the pore systems as a consequence of the effect of the fluid viscosity. 

5. R E S U L T S  OF T H E  N U M E R I C A L  I N V E S T I G A T I O N  

Using the dispersion relations constructed, the phase velocity and the linear damping decrement were 
calculated for the waves of each type in accordance with formulae (4.1). The calculation was carried out for a 
medium in which the solid phase material was quartz and the fluid was water. The initial pressure in the medium 
P0 = 0.1 MPa and the parameters for the phases were as follows: P]0 = 2500 kg/m 3, Ks = 5 x 101° Pa, 

o 3 9 3 Pt0 = 1000 kg/m, Kt = 2.25 × 10 Pa and ~tt = 10- Pa s. The principal parameters of the cracked porous medium 
were'.% =025,  o ~ = O 0 1 , a p = O O l m m ,  a .  . . f = 0 1 mm and ab = 2 ram. It was checked that the continuity c o n d i t i o n .  
(the wavelength must be greater than the characteristic dimension of the inhomogeneity of the medium) was satisfied 
during the calculations. Over the frequency range being considered, this condition holds in the case of type I and 
type 2 longitudinal waves and the type 4 transverse wave and it is also satisfied in the case of a type 3 longitudinal 
wave for frequencies up to 105 s -1. 

The phase velocity and the linear damping decrements of the waves which propagate in a cracked porous medium 
with an incompressible and undeformable skeleton are shown in Fig. 1. It has been pointed out above that two 
types of filtration waves can propagate in such a medium. The velocities of both waves are small at low frequencies. 
The wave with the greater velocity (shown by the solid line) is characterized by a significantly smaller decay compared 
with the second slower wave (the dashed line). 

The velocities and decays of the longitudinal wave (type 1-3) and transverse wave (type 4) in a cracked porous 
medium, calculated taking account of the compressibility and deformability of the skeleton, are shown by the solid 
lines in Fig. 2. The velocities of the two slower waves at low frequencies are close to zero, that is, these are two 
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filtration waves. The velocities of the deformation wave (type 1) and the transverse waves (type 4) are practically 
independent of the frequency and are mainly determined by the elasticity moduli of the skeleton of the medium. 
The deformation and transverse waves (types 1 and 4) decay far more weakly than the filtration waves (types 2 
and 3). If one compares Figs 1 and 2, it becomes obvious that waves of types 2 and 3, which are depicted by the 
solid lines in Fig. 2, correspond to the waves depicted by the solid and dashed line in Fig. 1. The deformation and 
transverse waves apparently do not exist in a medium with a rigid skeleton. The small values of the velocity of the 
type 2 wave in Fig. 2 compared with the wave corresponding to it in Fig. 1 (the solid line) are explained by taking 
account of the compressibility and deformability of the skeleton of the porous medium (this effect is analogous 
to the effect of the compressibility of the material of the tube walls when sound propagates in narrow tubes, which 
has been previously treated in detail [23]). 

The effect of the rate of fluid exchange between the pore systems on the characteristics of the linear waves in 
a fractured porous medium (the dashed, solid and dot-dash lines correspond to rlq = 0.1; 0.5; 5) is also 
illustrated in Fig. 2. It is seen that a change in the rate of mass exchange only has an effect on the filtration wave 
of type 3. As rlq increases, the velocity of this wave decreases and the decay increases. A filtration wave of type 3 
is therefore more conspicuous at a low rate of mass exchange, q. It disappears in the limit of an infinite rate of 
mass exchange q. 

The effect of the other parameters of the model, the medium, and the interphase interaction forces on the 
characteristics of the propagation of linear waves in a medium with double porosity was also studied. 

It was found that, in the transverse wave, the pressures in the fluid and in the primary and secondary pores remain 
constant, that is,pp O) = p/(4) = P0 (this follows from an analysis of the linearized system of equations) and only the 
shear components of the reduced stress tensor os. change. 

The nature of the change in the pressure perturbations 

p Jm~ = A~, , )exp( iox- ik t " )x ) ,  j = p , f  

of the mean pressure of the fluid and the longitudinal reduced stress 

O~pop p + G fop}  "0 
P}"} = , Oc") = .-s A~') exp(i~t- ik~")x) 
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in each of the longitudinal waves was also investigated (here A(p "0, A~ m), A!  m) are the complex amplitudes, 
m = 1, 2, 3 and the primes on the pressures and stresses have been omitted). It was found that, in the frequency 
range (1 s -1 ~< co ~< 10 6 s -1) being considered, the ratios of the amplitudes barely change and, in fact 

_(I) n(2) pl?) p~3) 
P~) --- const > 0, PP.. = I ,'t = 
__01, ,) p~O ' -l, --= I, = -I 

and, in addition, Re (p(a)/p~3)) < 0. 
The above-mentioned constant is determined by the parameters of the unperturbed state of the medium, that 

is, by the initial volumes, densities, etc. (in particular, the valuept(1)/(-o(1).) ~ 2.4) was obtained for the fractured 
porous medium with the equilibrium parameters used here). In the case of a third wave, the ratiop~(a)~r(3) is variable 

• 3 r J 

when 1 s -1 ~< to ~< 106s -1 and the inequality of the pressurespp () andp] 3) follows from this. 
It follows from the results of the calculations that, in the case of the deformation wave (type 1), both the skeleton 

and the fluid simultaneously experience either compression or dilatation and the fluid pressures in the pore systems 
are equal. In the case of the propagation of  filtration waves (of type 2 and type 3), the change in the total stress 
in the medium is approximately equal to zero 

0 ( 2 )  _ ,~(2) _ . ( 2 )  = 0 .  o (3) - o ° .  ) - p}3)  = 0 
- -  ~ , ~ , *  V I  - -  S 

In a type 2 wave, as in a type 1 wave, the fluid pressures are equal in the two pore systems. Conversely, in a 
type 3 wave, the pressures are not the same in the two pore systems, that is, the propagation of this wave is 
accompanied by a cross flow of fluid flom one pore system into the other. The very pronounced decay of a type 
3 wave shows that the equalization of the pressures occurs very rapidly and, consequently, the process of fluid 
exchange ceases• Hence, in a porous medium with two characteristic pore scales, the appearance of a longitudinal 
wave of type 3 is explained by the difference in the fluid pressure in the pore systems• 

In conclusion, we note  that the possibility o f  the appearance  o f  a filtration wave in a saturated porous  
med ium was predic ted theoret ical ly in the 1950s [24-27] and experimental  confi rmat ion using specially 
p repared  laboratory samples was obtained only in the 1980s [28] and quite recently using a natural  rock 
sample. The  second filtration wave in a medium with double  porosi ty has a high rate o f  decay and its 
experimental  observat ion is therefore  problematical .  

This research was suppor ted  financially by grants f rom the President  of  the Russian Federa t ion  
for  leading scientific schools (96-15-96001), the Ministry o f  Educa t ion  o f  the Russian Federa t ion  
(97-0-4.2-130) and the Russian Founda t ion  for  Basic Research (98-01-00831). 
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